

GUADARRAMA FLOW CAUDALÍMETROS ELECTROMAGNÉTICOS

Caudalímetros y tecnologías de medición de caudal. Excelencia en precisión y repetibilidad. Fabricados en España desde 1972.

Nuestra historia. Desde Contadores León Romero a Guadarrama Flow

G-FLOW es una empresa familiar fundada por León Romero, ubicada en Madrid cuyo origen se remonta a 1972, año en el que empezó a funcionar como taller artesanal dedicado a la fabricación y reparación de medidores de caudal; una de las áreas de actividad de G-FLOW es la fabricación de caudalímetros. Los caudalímetros se han ido mejorando y perfeccionando con el tiempo, permitiendo cubrir un amplio número de aplicaciones de medición de líquidos. Actualmente se ofrece una amplia gama, que se caracteriza por sus altas prestaciones en cuanto a exactitud, fiabilidad y resistencia a las más desfavorables condiciones de trabajo.

G-Flow emite un certificado de conformidad con cada caudalímetro.

Nuestro laboratorio de calibración cumple con la norma ISO 17025, estando acreditado por

Todos nuestros patrones utilizados para la calibración tienen trazabilidad del $oldsymbol{\subset} oldsymbol{\sqsubseteq} oldsymbol{\mathsf{M}}$

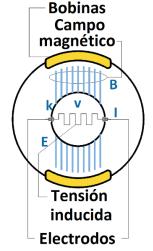
Caudalímetros electromagnéticos.

Principio de medición

principio de trabajo de estos caudalímetros se basa en medición por velocidad. El caudalímetro cuenta con dos bobinas que aplican un campo magnético perpendicular a la dirección del líquido, al pasar el líquido produce una tensión eléctrica que es captada por unos electrodos. Dicha tensión proporcional la velocidad lo tanto caudal líquido. а ٧ por El principio de operación está basado en la ley de inducción electromagnética de Faraday.

Cuando un líquido eléctricamente conductivo fluye por un tubo no conductivo y atraviesa un campo magnético, genera una tensión (E) que depende de la siguiente ecuación:

$$E = k \cdot B \cdot l \cdot v$$


E = Incremento del voltaje inducido en los electrodos es proporcional y lineal a la velocidad del fluido

k = Constante (depende de la sección del tubo de medición)

B = Fuerza del campo magnético

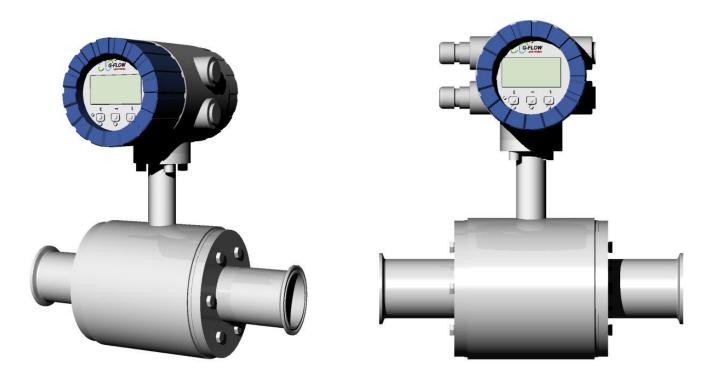
I = longitud del conductor (distancia entre electrodos)

v = velocidad del líquido

La tensión o voltaje (E) inducida en los electrodos es proporcional a la velocidad o caudal del líquido.

El campo magnético (B) es generado por dos bobinas de cobre con corriente constante

La longitud del conductor (I), (distancia entre electrodos de medición o diámetro interno del tubo de medición) también es un valor constante.


La única variable en la ecuación de Faraday (v) que es la velocidad del líquido.

Las ventajas de este tipo de contadores respecto a otros son las siguientes:

- Es un caudalímetro no intrusivo. No contiene partes internas ni fijas ni móviles en medio de la corriente del líquido.
- Indicado para líquidos conductivos con lodos o sólidos en suspensión.
- Gracias a su robusta construcción su duración es larga y tiene una alta fiabilidad.
- Al no tener partes móviles no necesita de un gran mantenimiento.
- Sin pérdidas de carga.
- Instalación sencilla.
- Tienen muy altas precisiones.
- Gran intervalo de medida. El caudal máximo puede ser hasta 100 veces el mínimo.
- Medida de caudal bidireccional.

Aplicaciones

Aplicaciones según industrias:

Industria alimentaria:

- Agua potable, de proceso, y osmotizada
- Aceite
- Salsas frías, calientes, gazpachos, sopas, caldos....
- Industria láctea
- Zumos
- Aditivos alimentarios
- Mermeladas, glucosa, azúcar líquido...
- CIP

Industria de bebidas alcohólicas:

- Bebidas fermentadas -
- Carga y descarga y coupage de vino, sidra y vermut -
 - Envío a llenadoras -
 - Control de fermentación -

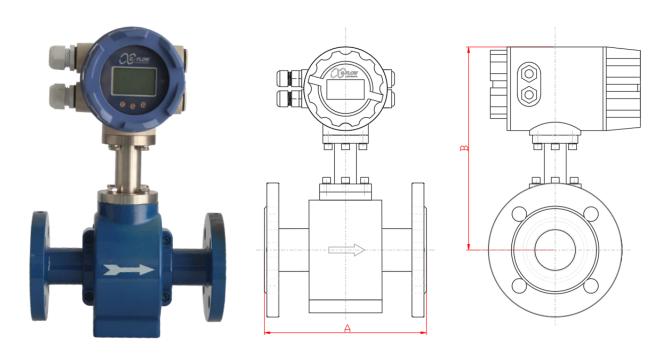
Industria química:

- Fertilizantes líquidos, ácido clorhídrico, ácido fosfórico, ácido nítrico, ácido sulfúrico, amoniaco, hidróxido de sodio....
- Productos de limpieza: Lejía, amoniaco

- Indicado para líquidos conductivos a partir de 5 μs/cm.
- Es un caudalímetro no intrusivo. No contiene partes internas ni fijas ni móviles en medio de la corriente del líquido.
- Medida de caudal bidireccional.
- Gran intervalo de medida. Pueden medir velocidades del líquido desde 0,1 hasta 10m/seg.
- Muy buena repetibilidad.
- Conexión a proceso:
 - o Brida
 - Muy Alta Precisión. Errores inferiores a:
 - \circ < 1% para velocidades del líquido de 0,1 a 10 m/seg. (rango de caudal de 1 a 100).
 - < 0,4% para velocidades del líquido de 0,5 a 10 m/seg. (rango de caudal de 1 a 20).
 - < 0,2% para velocidades del líquido de 1 a 10 m/seg.
 (rango de caudal de 1 a 10).
- Conexión eléctrica:
 - o Alimentación 85 250 Vca (10 W)

16 - 36 Vcc (7,5 W)

o Salidas Pulsos, 4-20 mA. y 2 alarmas


- o Fertilizantes líquidos.
- o Lejía, amoniaco.
- Ácidos y bases fuertes.
- o Agua
- o Hipoclorito sódico
- o Gel, champú
- o Pintura
- o Detergente, suavizante, tensoactivo
- o Anticongelante, limpiaparabrisas

Cabezal de lectura separado CSAF

	Presió	n (bar)	Temperatura (°C)	Cauda	les (m³ /h)		Mater	iales	Conexiones		siones m)	Peso (kg)
Modelo	Estándos	0	Estándar	A 45-5	N46-2	Laboration		Electrodos**	D.: I. EN 1002 1			Est/order
	Estándar	Opción*	Estandar	Mínimo	Máximo	Interior	Estándar	Opción	Brida EN-1092-1	А	В	Estándar
AFT06	40	-	120	0,012	1,20	PFA	Нс	AISI 316L, Hb, Ti, Ta	DN10	200	220	4
AFT10	40	-	120	0,03	3,00	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN10	200	220	4
AFT15	40	-	120	0,06	6,36	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN15	200	220	5
AFT20	40	-	120	0,11	11,30	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN20	200	220	6
AFT25	40	-	120	0,18	17,60	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN25	200	230	7
AFT32	40	-	120	0,29	29,00	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN32	200	235	8
AFT40	40	-	120	0,45	45,20	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN40	200	245	8
AFT50	40	-	120	0,7	70,5	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN50	200	250	11
AFT65	16	40	120	1,2	119	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN65	200	270	13
AFT80	16	40	120	1,8	180	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN80	200	285	15
AFT100	16	40	120	2,8	280	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN100	250	300	19
AFT125	16	40	120	4,4	440	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN125	250	315	23
AFT150	16	40	120	6,3	600	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN150	300	325	30
AFT200	16	40	120	11	1.100	Teflón/FEP	Нс	AISI 316L, Hb, Ti, Ta	DN200	350	350	40

^{*} Presión máxima bajo pedido

^{**} Hb – Hastelloy B, Hc- Hastelloy C, Ti – Titanio, Ta - Tántalo

Cabezales	Lectura local	Salida de pulsos	Salida analógica	Comunicación MODBUS	Protección golpes	Protección	Protección Sensor
CSAF (cabezal separado)	Х	Х	Х	Х	IK08	IP65	IP67 o IP68
CCAF (compacto)	Х	Х	Х	X	IK08	IP67	IP67

- Indicado para líquidos conductivos a partir de 5 μs/cm.

- Es un caudalímetro no intrusivo. No contiene partes internas ni fijas ni móviles en medio de la corriente del líquido.

- Materiales constructivos

o Interior: Teflón/FEP.

o Electrodos: AISI 316L - Opciones Hc, Ti, Ta

o Exterior: AISI 304

- Bajo coste de mantenimiento.

- Medida de caudal bidireccional.

- Gran intervalo de medida. Pueden medir velocidades del líquido desde 0,1 hasta 10m/seg., es decir, el caudal máximo puede ser 100 veces el mínimo.

Muy buena repetibilidad.

Conexiones a procesos:

o Rosca alimentaria NW DIN 11851.

o Clamp.

o Brida DIN.

- Muy Alta Precisión. Errores inferiores a:

< 1 % para velocidades del líquido de 0,1 a 10 m/seg. (rango de caudal de 1 a 100)

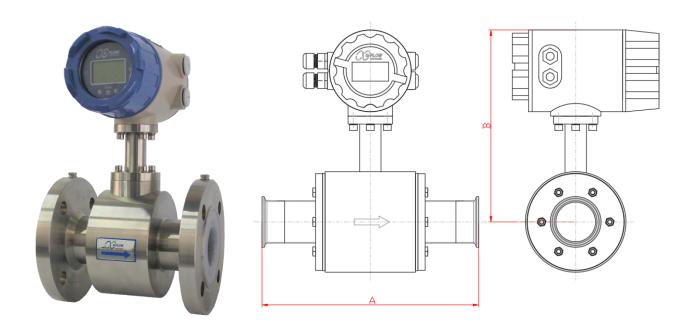
< 0,4% para velocidades del líquido de 0,5 a 10 m/seg.
 (rango de caudal de 1 a 20)

< 0,2% para velocidades del líquido de 1 a 10 m/seg.
 (rango de caudal de 1 a 10)

Conexión eléctrica:

o Alimentación 85 - 250 Vca (10 W)

16 - 36 Vcc (7,5 W)


o Salidas Pulsos, 4-20 mA. y 2 alarmas

- Líquidos alimentario conductivos (con juntas alimentarias).
 - o Leche, yogurt, helados y otros productos lácteos.
 - o Cerveza, vino, sangría, vermut y licores.
 - o Zumos, batidos, gazpachos, sopas y caldos.
 - o Vinagre, mayonesas y otras salsas.
 - o Mermelada, glucosa y azúcar liquida.
 - o Agua potable, mineral y residual etc....
- Industria química
 - o Fertilizantes líquidos.
 - o Lejía, amoniaco y otros productos de limpieza.
 - Ácidos y bases fuertes.

	Presió	n (bar)	Temp. (°C)	Caudale	s (m³/h)		Materiale	5		D	imensione	es (mm)			Peso (kg)
Modelo	Estándar	Opción*	Estándar	Mínimo	Máximo	Interior	Elec	trodos**	Brida EN	I-1092-1	Rosca DI	N 11851	Cla	mp	Estándar
	Estandar	Opcion.	Estandar	IVIIIIIIIII	iviaximo	Interior	Estándar	Opción	А	В	Α	В	А	В	Estandar
AFS04	25	40	120	0,01	0,50	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	-	-	214	207	219	207	3
AFS06	25	40	120	0,012	1,20	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	-	-	214	207	219	207	3
AFS08	25	40	120	0,02	1,80	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	-	-	214	207	219	207	3
AFS10	25	40	120	0,03	3,00	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	200	254	214	207	219	207	4
AFS15	25	40	120	0,06	6,36	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	200	258	214	207	219	207	5
AFS20	25	40	120	0,11	11,30	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	200	259	214	207	219	207	6
AFS25	25	40	120	0,18	17,60	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	200	261	190	230	175	230	7
AFS32	25	40	120	0,29	29,00	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	200	264	190	230	175	230	8
AFS40	25	40	120	0,45	45,20	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	200	264	280	242	273	242	8
AFS50	25	40	120	0,7	70,5	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	200	264	284	242	273	242	11
AFT65	25	40	120	1,2	119	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	200	272	292	256	273	255	13
AFS80	16	40	120	1,8	180	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	250	282	362	261	333	261	15
AFS100	16	40	120	2,8	280	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	250	300	382	280	333	280	19
AFS125	16	40	120	4,4	440	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	250	315	-	-	-	-	23
AFS150	16	40	120	6,3	600	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	300	325	-	-	-	-	30
AFS200	16	40	120	11	1.100	Teflón/FEP	AISI 316L	Hc, Hb, Ti, Ta	350	350	-	-	-	-	40

^{*} Bajo pedido

^{**} HB – Hastelloy B, HC- Hastelloy C, Ti – Titanio, Ta – Tántalo

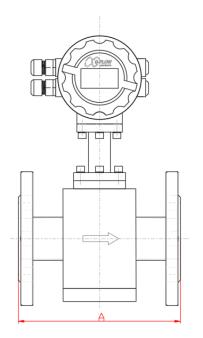
Cabezales	Lectura local	Salida de pulsos	Salida analógica	Comunicación MODBUS	Protección golpes	Protección	Protección Sensor
CSAF (cabezal separado)	х	Х	Х	X	IK08	IP65	IP67 o IP68
CCAF (compacto)	X	X	X	X	IK08	IP67	IP67

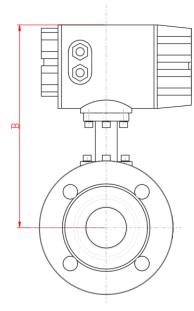
Caudalímetros electromagnéticos. AFG

Características

- Indicado para líquidos conductivos con lodos o sólidos en suspensión.
- Construcción sencilla y robusta, sin partes internas móviles
- Bajo mantenimiento.
- Muy buena repetibilidad (Incertidumbre menos al 0,05%).
- Muy buena precisión de medida. Errores inferiores a:
 - < 1 % para velocidades del líquido de 0,1 a 10 m/seg.(rango de caudal de 1 a 100)
 - < 0,4% para velocidades del líquido de 0,5 a 10 m/seg.
 (rango de caudal de 1 a 20)
 - < 0,2% para velocidades del líquido de 1 a 10 m/seg.(rango de caudal de 1 a 10)
- Conexiones a proceso: Bridas EN1092-1
- Posibilidad de recubrimiento:
 - o Neopreno: Buena resistencia a la abrasión y corrosión.
 - o Ebonita: Buena resistencia a la corrosión, abrasión y posee grado alimentario.

- o Aguas residuales.
- o Agua de red.
- o Aguas minerales.





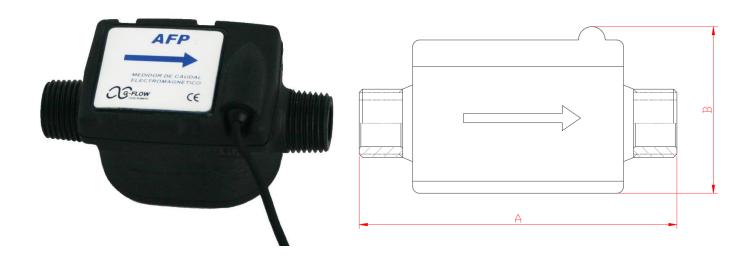
Modelos y caracteristicas ténicas

	Presió	n (bar)	Temp (°C)	Caudal	es (m³/h)		Materiale	es	Conexiones	Dimensiones (mm)		Peso (kg)
Modelo	Est/order	0	Est/order		NA/cdoor	Recubrimiento interior		Electrodos	D.: J. EN 1002 1			Estándar
	Estándar	Opción*	Estándar	Mínimo	Máximo	Estándar	Estándar	Opción	Brida EN-1092-1	A	В	Estallual
AFG50	40	-	80	0,7	71	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN50	200	250	11
AFG65	16	40	80	1,2	119	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN65	200	270	13
AFG80	16	40	80	1,8	180	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN80	250	285	15
AFG100	16	40	80	2,8	280	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN100	250	300	19
AFG125	16	40	80	4,4	440	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN125	250	315	23
AFG150	16	40	80	6,3	600	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN150	300	325	30
AFG200	16	40	80	11	1.100	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN200	350	350	40
AFG250	16	40	80	17	1.700	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN250	450	375	50
AFG300	16	40	80	25	2.500	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN300	500	400	60
AFG350	16	40	80	34	3.400	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN350	550	425	85
AFG400	16	40	80	45	4.500	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN400	600	450	110
AFG450	16	40	80	57	5.700	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN450	600	475	125
AFG500	16	40	80	70	7.000	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN500	600	500	150
AFG600	16	40	80	100	10.000	Neopreno, Ebonita	Нс	AISI 316L, Hb, Ti, Ta	DN600	600	550	180

^{*} Bajo pedido ** Hb – Hastelloy B, Hc- Hastelloy C, Ti – Titanio, Ta – Tántalo

Cabezales	Lectura local	Salida de pulsos	Salida analógica	Comunicación MODBUS	Protección golpes	Protección	Protección Sensor
CSAF (cabezal separado)	X	Х	Х	X	IK08	IP65	IP67 o IP68
CCAF (compacto)	X	X	X	X	IK08	IP67	IP67

- Indicado para líquidos conductivos con lodos o sólidos en suspensión.
- Construcción sencilla y robusta, sin partes internas móviles
- Materiales en contacto con el líquido:
 - o Acero inoxidable AISI316
 - o Resina PPS
- Conductividad mínima del líquido: 50 μS/cm
- Alimentación: 12-24 V DC 100 mA
- Temperatura máxima: 60ºC
- Presión máxima 10bar


- Amoniaco
- o Cerveza
- o Vino
- o Zumo
- Salsas y gelatinas
- o Agua
- o Líquidos que contengan agua
- o Sosa, ácido cítrico, ácido fórmico
- o Detergentes y tensioactivos
- o Bases

Modelos y caracteristicas ténicas

Modelo	Presión (bar)	Temp (°C)	Caudales	(m³/h)	Resolución Estándar	Materiales		Conexiones	Dimensiones (mm)		Peso (kg)
	Estándar	Estándar	Mínimo	Máximo	Pulsos/litro (aprox.)	Recubrimiento interior	Electrodos	Rosca Macho	А	В	Estándar
AFP05	10	60	0,003	0,12	24.000	Resina PPS	AISI 316	1/4"	85	49	0,2
AFP10	10	60	0,03	1,4	2.400	Resina PPS	AISI 316	1/2"	95	52	0,3
AFP20	10	60	0,18	8	400	Resina PPS	AISI 316	1"	110	62	0,4

- Indicado para líquidos conductivos con lodos o sólidos en suspensión.
- Indicado para tuberías de gran tamaño (>DN100)
- Construcción sencilla y robusta, sin partes internas móviles
- Materiales en contacto con el líquido:
 - o Acero inoxidable AISI316
- Conductividad mínima del líquido: 50 μS/cm
- Alimentación: 12-24 Vdc o 220 Vac
- Temperatura máxima: 80 ºC (160ºC, bajo pedido)
- Presión máxima 16 bar (40 bar bajo pedido)
- Precisión 1,5% > 0,3 m/s

- o Agua común
- Aguas Residuales
- o Agua de mar
- o Industria del petróleo
- o Industria química
- o Ácido nítrico
- o Sosa, ácido cítrico, ácido fórmico
- Detergentes y tensioactivos

	Diámetro (mm)	Presiór	n (bar)*)* Temp (°C)*		Caudales (m/s)			М	ateriales		Conexiones	
Modelo	Estándar	F-444	N 4 4	Estándar	NA designa	Mínimo	Máximo	Cuer	ро	Electrod	os*	D C	Brida
	Estandar	Estándar	iviaximo	EStandar	IVIAXIMO	IVIIIIIIIII	IVIAXIMO	Estándar	Opción	Estándar	Opción	Rosca Gas	Brida
AFI	DN100 - 3.000	16	40	80	160	0,1	15	ASIS 304	AISI 316	AISI 316L, Hc	Hb, Ti, Ta	Rosca Macho 2"	DN50 PN16

^{*} Presión y temperatura máxima bajo pedido

^{**} Hb – Hastelloy B, Hc- Hastelloy C, Ti – Titanio, Ta - Tántalo

Cabezales	Lectura local	Salida de pulsos	Salida analógica	Comunicación MODBUS	Protección golpes	Protección	Protección Sensor
CSAF (cabezal separado)	Х	Х	Х	X	IK08	IP65	IP67 o IP68
CCAF (compacto)	Х	Х	X	X	IK08	IP67	IP67

- Indicado para tuberías de gran tamaño (>DN200) que se encuentren parcialmente llenas.
- Puede medir con un 10% del volumen máximo de líquido en la tubería.
- Construcción sencilla y robusta, sin partes internas móviles.
- Materiales en contacto con el líquido:
 - o Hastelloy C
 - o Neopreno
- Conductividad mínima del líquido: 5 μS/cm
- Alimentación: 12-24 Vdc o 220 Vac
- Protección sensor: IP65 IP68.
- Precisión 2,5% > 0,3 m/s

- Agua de irrigación.
- Aguas residuales.
- o Agua de mar.
- o Aliviaderos de tormenta.
- Recogida y caudales de retorno de aguas residuales industriales.
- o Control de agua de enfriamiento.

	Diámetro (mm)	Presió	n (bar)	Temp (°C)	Temp (°C) Caudales (m/s)			Materiales		Conexiones
Modelo	Estándar	< DNI2EO	≥ DN300	Estándar	stándar Mínimo		Recubrimiento	Electrodos*		Brida EN 1092-1
	Estanual	S DIN250	2 DIN300	EStallual	IVIIIIIIII	Máximo	Estándar	Estándar	Opción	BIIDA EN 1092-1
AFV	DN200 - 600	16	10	80	0,05	10	Neopreno	AISI 316L	Hc, Hb, Ti, Ta	DN200 – DN600

^{*} Hb – Hastelloy B, Hc- Hastelloy C, Ti – Titanio, Ta - Tántalo

Cabezales	Lectura local	Salida de pulsos	Salida analógica	Comunicación MODBUS	Protección golpes	Protección	Protección Sensor
CSAF (cabezal separado)	Х	Х	Х	Х	IK08	IP65	IP65 o IP68

Contacto

Para cualquier problema que pueda encontrar o servicio que necesiten, no duden en ponerse en contacto con las oficinas de G – Flow.

Teléfono:		+34 916378174 / +34 916378175
E-mail:		serviciotecnico@g-flow.com
	Oficina	Calle Justina Velasco Martín 2,
Dirección:	Laboratorio	Pol. Ind. Los Llanos
_	Fabricación	28260 – Galapagar – Madrid.

